Skip to main content

Plantar Fasciopathy (Plantar Fasciitis)

Plantar Fasciopathy (Plantar Fasciitis)

Plantar Fasciopathy (Plantar Fasciitis) is one of the most common sources of heel pain and can often prove debilitating for many patients once symptoms become chronic.  The condition tends to affect middle-aged people, though can easily impact younger and extremely active people, people who spend a lot of time on their feet and people carrying heavy loads. Heavy loads may be due to obesity or can be related to an aspect of work, such as in the military and emergency services. Pain is usually felt on the underside of the foot and near heel area and is commonly sharp and stabbing in nature. As with many conditions with an inflammatory component, symptoms tend to appear worse first thing in the morning or after rest. Typically, the pain seems to improve with walking once one has pushed through the pain. However, symptoms then return and can prove worse after a rest period. One can see the Plantar Fascia area highlighted with a “greenish tint” in the following diagram.

Images produced with kind permission of from Essential Anatomy 5
(Copyright © 2018 3D4Medical. All rights reserved.)

The actual condition is caused by straining the plantar fascia and often the surrounding soft tissues structures of the foot (sole).  This straining of the tissues leads to the initiation of the bodies inflammatory response. The bodies initial reaction helps to protect (cushion) the damaged tissues and starts the tissue repair process. However, once damage and inflammation have occurred, it is relatively easy to create further irritation/inflammation. Hence, the condition can quickly become a chronic problem.

The plantar fascia plays a critical role in arch support, which can have a direct impact on other joints and soft tissues elsewhere in the kinetic chain. In brief, the kinetic chain is a biomechanical concept, which logically suggests that one joint structure will have an effect on other joints within the chain.

The kinetic chain is typically made up of:-

Ankle joints, knee joints, hip joints, lumbar spine, thoracic spine and cervical spine.

One can further divide functional joint structures into sections of mobility and or stability. Many of the joint structures and associated tissues within the kinetic chain have multiple roles or functions. These tissues also operate similarly to suspension and shock absorption or damping systems. For example, cartilage and menisci within the knee provide a form of shock absorption function amongst other things.

The feet are particularly complicated joint structures and consist of 26 bones, 33 joints and around 100 muscles, tendons and ligaments. Much like the rest of the body, the feet also contain another structural and functional component, fascia, which transcends multiple aspects of the kinetic chain. The foot plays a critical role in the human bodies suspension system. As already mentioned the feet are incredibly complicated. Hence the following explanation and diagrams are hugely simplified for the reader. In essence, a simple triangle can help to remove a great deal of the foot mechanics complexity, though there is much, much more to the foot. The following diagram shows a side profile of the right foot and helps to demonstrate the triangular nature of the structures. One can see the Plantar Fascia area highlighted with a “greenish tint” in the following diagram.

Images produced with kind permission of from Essential Anatomy 5
(Copyright © 2018 3D4Medical. All rights reserved.)

Non-weight bearing.

Even when the foot and ankle are in a non-weight bearing position, tendons, muscles, ligaments and fascia still apply forces to the structures. The blue, coiled type spring section on the sole of the diagram highlights the plantar fascia, with the toes on the left and heel on the right. The coiled spring shape has been used to represent the somewhat elastic nature of the plantar fascia. In a non-weight bearing position, the plantar fascia has a level of tension, and the forefoot and rearfoot are slightly closer together than in weight bearing. The Achilles Tendon also produces force to the plantar surface of the foot, due to the connection points of the tendon and the plantar fascia. The midpoint of the triangle in the non-weight bearing diagram is relatively high when compared to the weight bearing picture. Hence, the triangle can flex and changes shape with loading.


In the weight-bearing position, the plantar fascia is under more tension, and the forefoot and rearfoot are slightly further apart. The shape of the triangle changes due to the weight bearing load, and in effect, the midpoint of the triangle becomes lower or closer to the ground.

As is the case with many tissues within the body tissues will adapt to the forces placed on them, up to a point (Wolff’s law, Davis’s Law). Tissues will then start to break or become dysfunctional if they are unable to adapt to the specific loads/requirements placed on them.  For example, bones will get thicker/stronger; muscles will gain a combination of strength, endurance and suppleness and joints structures can adapt somewhat too.  Bodily tissues will also change in situations that are causing tissue irritation, such as when wearing ill-fitting shoes.  Ill-fitting shoes often lead to blisters, blackened toenails, and over time calluses, bunions etc. These changes are the bodies way of attempting to protect itself against the damage caused by any given irritant.

Irritation of the plantar fascia can result in a thickening of the tissues. If left untreated and the condition becomes chronic then the body can often lay down additional bone deposits as a result of chronic irritation to the aponeurosis. The long-term irritation to the tissues of aponeurosis results in excessive tension within these structures as they become shortened. The bone deposits or “heel spurs” can form as the body attempts to protect the bones of the foot from the thickened and inflamed plantar fascia matrix. Bone spurs typically then result in increased pain and further tissue degeneration.

As with many conditions, it is essential to identify the cause of the problem, and this may be elsewhere in the kinetic chain. It is well worth seeking professional advice before the condition becomes Chronic. There are many types of therapists that can assist with such issues, with varying degrees of training, education and relevant experience. Professional may include, Sports Medicine Doctors, GP’s, Chiropractors, Physiotherapists, Osteopaths, Podiatrists and Soft Tissue therapists (Sports Massage and Remedial Massage) etc. There are some self-help options, including Trigger Point Therapy (foam roller style), Gentle Stretching of the Plantar Fascia and lower leg muscles, self-administered over the counter ibuprofen or paracetamol, icing the plantar fascia and even wearing heel lifts. However, again it is strongly advisable to seek a Professional Diagnosis and treatment advice before embarking on any form of self-treatment.

Further useful Articles and Reading:-

Basic Running Injury Preventive Measures
Achilles Tendinopathy
Foam roller self-massage
Self-treatment - (Massage Ball, Trigger Point Therapy)

The next Running Related Article will cover Patellofemoral Syndrome (Runner's Knee, Rower's Knee).

Article written by Dr Terry Davis MChiro, DC, B.Sc (Hons), Adv. Dip. Rem. Massag.,  Cert. WHS.
The Corporate Wellness, Musculoskeletal and Chiropractic Specialists

Popular posts from this blog

Stress, the Individual, Wellbeing, Performance and the Workplace (Part One)

Historically, there has always been a view that there is a link between physical and mental well-being and vice versa. A great deal of research has been carried out into the relationships between various aspects of health including physical and psychological well-being over the years. There is an ever-increasing evidence base from multiple areas of research suggesting that physical and mental well-being are inextricably linked. However, there are numerous factors affecting health, and one could argue that there are multiple types of health or wellness. These can broadly be categorised as:-

All of these types of health and well-being are interrelated, and the relationships are far from being fully understood.  "Stressors" can take many forms and effect each type of health and thus overall health. Research has demonstrated significant links between various aspects of health. Hence, a pure BioPsychoSocial model of health is a little too simplified.

Elite Sports and Elite Military…

Basic Running Injury Preventive Measures

Well, it is that time of the year again, and the first British Airways Run Gatwick Half Marathon is fast approaching, all 13.1 Miles of it. Hopefully, the weather will be better than for this year's (2018) Sage Reading Half Marathon, fingers crossed. The last thing that anybody wants during preparation for, or while attempting a Half, Full, or Ultra Marathon is the “stress” of a running-related injury. Many of the principles of injury prevention covered in this article equally apply to other sports and activities too. In the case of running such, injuries can occur for a whole range of reasons including:-
OvertrainingPrevious unresolved injuries, affecting joints, tissues and structures within the kinetic chainInadequate warm up or cool downFailure to adequately stretch tissuesLack of hydrationOther medical conditionsAccidentsPoor techniqueIllness and more… Tissue Adaption and Injuries
That said there are things that one can do to help prevent an injury and understanding a little abo…

TotalMSK Running Related Injury Series - Achilles Tendinopathy

Achilles Tendinopathy is a condition that can be very painful, severely hamper ones running ability and can often prove problematic to resolve once Chronic. The injury is typically characterised by pain, swelling and general stiffness just above the heel bone (1 - 2 inches). As with many conditions with an inflammatory component, symptoms are usually worst first thing in the morning and appear to improve with movement. Hence, it is quite common for people to push through the discomfort and or even run through the pain. However, the tissues then usually feel far more painful after the activity, and the pain, stiffness and swelling come back after rest or a nights sleep.

Common Causes of Achilles Tendinopathy include:-
Blunt force trauma.Excessive calf muscle tension.Not warming up or cooling down sufficiently.Failing to stretch tissues effectively.Ankle injuries and unresolved tissue damage.Changes in joints, structures and or soft tissues affecting the kinetic chain (biomechanics).Unsu…